Following up on our recent report of high-affinity DNA aptamers for SARS-CoV-2, we’ve been busy working with our collaborators in the Soleymani Lab and the Biointerfaces Institute to apply them on electrochemical sensors. Read our latest COVID19 paper at Pubmed to learn more about how we achieve high sensitivity detection of SARS-CoV-2 in unprocessed human saliva to pave the way for a rapid and sample diagnostic test.
Category: News
Facile Synthesis of Pd-Ir Nanocubes for Biosensing

Take a quick look at our recent publication in Frontiers in Chemistry. In this paper, a simple and surfactant-free approach is presented to synthesize Pd-Ir nanocubes with atomic Ir shell thickness in an aqueous solution at room temperature. Biomolecules such as antibodies and nucleic acids have free access to the surface of Pd-Ir nanocubes. Applications of Pd-Ir nanocubes in immunoassays and aptamer-based biosensors are realized, exploiting the excellent peroxidase activity and fluorescence quenching ability of Pd-Ir nanocubes. Read more about our work at Pubmed. – Jiuxing
Li J, Li Y. Facile Synthesis of Pd-Ir Nanocubes for Biosensing. Front Chem. 2021 Nov 24;9:775220. doi: 10.3389/fchem.2021.775220. PMID: 34900937; PMCID: PMC8651546.
DNA Aptamers for SARS-CoV-2
The Li Lab and our collaborators from across the McMaster community have published our first report on our novel aptamers for COVID19! The lab has refocused our efforts over the past year to address pressing COVID19 problems and we’re excited to finally be sharing our work. Read more about our work at Pubmed.
Applying Functional Nucleic Acids to Food Pathogen Detection
In a collaboration with the Didar Lab and Toyota Tsusho Canada, the Li Lab will be working towards the development of food wrap technologies for the detection of pathogenic bacteria using DNA sensors. Read more about it McMaster Brighter World.
NSERC & L’Oréal-UNESCO Women in Science and IUPAC Young Chemist
Li Lab postdoctoral fellow Erin McConnell has been awarded the NSERC & L’Oréal-UNESCO Women in Science Supplement. Congratulations to Erin for her fantastic work as a scientist and as a role model for young scientists around the world.
Explore the following links to learn more about Erin’s work and the work of the other great researchers recently recognized.
Canadian Awarding ceremony of the L’Oréal-UNESCO For Women in Science fellowships
NSERC and L’Oréal-UNESCO For Women in Science Supplement
L’Oréal-UNESCO For Women in Science 2018: Erin McConnell
IUPAC Young Chemist
A DNAzyme Feedback Amplification Strategy for Biosensing
Take a look at this recent publication from the Li Lab in Angewandte Chemie International Edition. In this paper, we explore a novel signal amplification strategy termed DNAzyme feedback amplification (DFA). This method takes advantage of rolling circle amplification and RNA-cleaving DNAzymes for biosensing applications, with sensitivity improvements of 3-6 orders of magnitude when compared to conventional methods. -Suraj
Detection of DNA Amplicons of Polymerase Chain Reaction Using Litmus Test
Checkout this recent paper from the Li Lab in Scientific Reports, “Detection of DNA Amplicons of Polymerase Chain Reaction Using Litmus Test.” Here we report on a novel DNA detection method that combines the advantages of the polymerase chain reaction with the simplicity of a litmus test. The diagnostic capabilities of the platform is demonstrated using clinically validated stool samples from C.difficile infected patients. -Suraj
Funding for Legionella Biosensors Brings Research and Industry Together
Funding was recently announced to advance the Li lab’s research into rapid Legionella diagnostic technologies. Congratulations to our McMaster collaborators Dr. Carlos Filipe and Dr. John Brennan of the Biointerfaces Institute and industry partners TGWT Clean Technologies Inc., Cytodiagnostics and Mold and Bacterial Consulting Labs. Read more about it on the McMaster News website.
McMaster direct-entry PhD student ranked 6th in nationwide CIHR competition
Sepehr Manochehry, a PhD candidate in his 3rd year, earned the coveted CIHR doctoral scholarship this year. He was ranked 6th nationwide, putting him in the top one percentile among more than 700 other applicants. His success and the focus of his research was recently featured in a news magazine article. Read it to gain a better understanding of what motivates hard-working graduates students like Sepehr. http://biochemrocks.freeflowdp.com/biochemrocks/2357984385961772?pg=23#pg23
Programming a topologically constrained DNA nanostructure into a sensor
Checkout the Li Lab’s latest paper in Nature Communications! In a collaborative project between the Li Lab and McMaster’s Biointerfaces Institute, we report a novel reporter system based on mechanically interlocked circular DNA, rolling circle amplification and DNAzymes for highly sensitive bacterial detection.